Chapter 6: Introducing Classes 145

As you can see, the

8etDijy,
1‘\;\“\})'0, “’h(‘l\ () Ime

tl '
1od is used to set the dimensions of each box. For
} | myboxl.set Dim(lo, 20

1s executed, 10 is copied intq
Inside setDim() the values ofl:v,v h PAIRTY copied into h, and 15 is copied intod
respectively. *and d are ghep assigned to width, height, and depth,
For many readers, the

However, if such things ascﬁr‘cs o Presented in the preceding sections will be familiar.
then you might want to take e calls, ArBuments, and parameters are new to you,
of the method invocation pasr?;e tt IMe to experiment before moving on. The concepts
programming, cHeters, and retyrn values are fundamental to Java

e — - — = ——
-

_| Constructors

(A constructor initializes an object immediately upon creation. It has the same name

as the class in which it resides andis syntactically similac to a nethod;Once defined,
the constructor js automaticall immediately after the object is created, before the ‘a

Jieéw operator completes. Constructors look 3 Titile strange because_they have no retirn

e, not even void. This is because the im lici ctor 1s the
class type itselF. It is the constructor’s Job to initialize the inter e of an object so

at Initialized, usable object immediately.
Ou can rework the Box example so that the dimensions of a box are automatically
initialized when an object is constructed. To do S0, replace setDim() with a constructor.
Let’s begin by defining a simple constructor that simply sets the dimensions of each
box to the same values. This version is shown here:

rT /* Here, Box uses a constructor to initialize the
dimensions of a box.

| *y

: class Box {

g double width;
| double height;

Scanned with CamScanner

146 java™ 2: The complet

¢ Reference

% [,)f h!

th congt ructol f i BRox
i
4y . '
o out .print Int"Constructina Box");
_‘y,..r-'-m. \
width = 10:
hei1ght 10;
depth = 10;

)

,/ compute and return volume

double volume() |
return width * height * depth;

class BoxDemob {
public static void main(String args|]) {

// declare, allocate, and initialize Box objects
Box myboxl = new Box () ;
Box mybox2 = new Box();

double vol; -
! :
1 // get volume of first box " N
1 vol = myboxl.volume/() ;
h System.out .println("vVolume is " + vol) ;
// get volume of second box
57 vol = mybox2.volume() ;
System.out.println("Volume 1s " + vol);
!
hl }

When this program is run, it generates the following results:

Constzuctlng Box
Constructing Box
Volume 1s 1000.0
Volume 1s 1000.0

Scanned with CamScanner

“lle 6: lltrohull Wie>

- s DD
As you can “”'h‘“h{ n;yb(m N Mybox2 were initialized by the Box()con='"" tor
, were created. Singe - ‘e imtinhized by the
) were . e the u'nhlrmlm gives all boxes the same dnnn-n-..nn-,

h‘~l1 "1“

" . »oth mybox1 ;

10 by 10 b‘\ l\ll)('jt‘oBO‘()yl‘sof:]l' :]n:1 n‘Yboxz will have the same volume [he priﬂl'n‘ !
..[.ltl‘m"“l e ' 1¢ sake of ilustration only Maost constructors will not

Jeplay anything They will SIply initalize n object
¢ (
when y(‘DU

Before moving on, let’s reexamine the new operator. A know
‘rator < youu ¢

|||0C~1h‘ an Qb]t‘t"t, you usce thb fn"““’ll\g general [nrm
i (¥

‘-/.:»-;\N = new c'ln\-.;m,,,,.();

Now you can understand why the parentheses are needed after the class name Wh

Now' ! .
sctually happening 1s that the constructor for the class is being called. Thus, 11 the line
e

atis

r BoX MYy boxl = new Box();
b
new Box() is calling the Box() constructor. When you do not explicitly define a constructor
for a class, then Java creates a default constructor for the class. This 1s why the preceding
jine of code worked in earlier versions of Box that did not define a constructor The
default constructor automatically initializes all instance variables to zero. The default
constructor is often sufficient for simple classes, but it usually won’t do for more
sophjsticated ones. Once you define your own constructor, the default constructor

is no longer used.

parameterized Constructors
While the Box() constructor in the preceding example does initialize a Box object. 1t
is not very useful—all boxes have the same dimensions. What 1s needed 1s a way to
construct Box objects of various dimensions. The easy solution is to add parameters
to the constructor. As you can probably guess, this makes them much more useful. For
example, the following version of Box defines a parameterized constructor which sets
the dimensions of a box as specified by those parameters. Pay special attention to how

Box objects are created.

r Here, Box uses a parameterized constructoy to
.?- initialize the dimensions ot a box.

X

|| class Box f

§ uouble width;

:’ double }u-,ghr;

| | louble depth;

!

h

Scanned with CamScanner

T™i= 12 e CONAL Y et ey fliy ."'*,

PBox (double w, doubles h, doubil e 1) {

width W
herght P‘.'
ol])'h \l:

compute and return volume
double volume () {
return width * hejght » dept h;

)

Class BoxDemo7 {
public static void main(String args|(]) ¢
// declare, allocate, ang initialjze Box objer-.
Box myboxl = new Box (10, 20, 15). S
Box mybox2 = new Box (3, ¢, 9);

double vol;

// get volume of first box
vol = myboxl.volume():
System.out.println("Volume 1s " + vol);

// get volume of second box
vol = mybox2.volume();
System.out.println("Volume is " 4 vol);

The output from this program is shown here;

Volume 1is 3000.0
Volume is 162.0

As you can see, each object is initialized as specified in the parameters to
constructor. For example, in the following line,

Scanned with CamScanner

Chapter 6: Introducing Classes

E] pox myboxl = new Box (19 20, |
! ! S) H
e values 10, 20, and 15 are
(t)l;)'ect- Thus, mybox1’s copy I-:)afs\arsei:littl(: :I\Ie.Box() constructor when new creates the
20, and 15, respectively. » NeIght, and depth will contain the values 10,

’,f”———_ S —— I

_

The this Keyword

metimes a method will
So nwr_to_‘thegblect that invoked it. To allow this, Java

defines the this keyword. thi :
de bAdd = Can be used inside any method to efer to the current object.

p—
at is, this is always a reference to the ob:
v e ob : :
can use this anywhere a reference tg ano :?t g? t‘l:eH]Ch thetmeth?d w::si Slmgrl;ei‘ti You
2. \1 curren glﬂs&

To better understand what this refers to, consider the following version of Box():

// A redundant use of thjg

. 4 L
Box (double w, double n, double 4 ¢ w" °
this.width - w;
this.height - n;)

this.depth - q;
1]

This version of Box() operates exactly like the earlier version. The use of this is redundant,
but perfectly correct. Inside Box(), this will always refer to the invoking object. While ,
itis redundant in this case, this is useful in other contexts, one of which is explained in,

the next sectione

Instance Variable Hidings :

As)-'01-1 know, it is illegal in Java to declare two local variables with the sanre name
Q

inside the same or enclosing scopes. Interestingly, you can have local variables,
including formal parameters to methods, which overlap with the names of the class’
instance variables. However, when a local variable has the same name as an instance
variable, the local variable hides the instance variable. This is why width, height, and
depth were not used as the names of the parameters to the Box() constructor inside the
Box class. If they had been, then width would have referred to the formal parameter,

hiding the instance variable width. While it is usually easier to simply use different
this situation. Because this lets you refer directly

names, there is another way around -)
lve any name space collisions that might occur

to the object, you can use it to resove :
between instance variables and local variables. For example, here is another version of _

Scanned with CamScanner

